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ABSTRACT

In a recent paper, Isaacs has proposed a model for an unstructured food web in which the interconnec­
tions are so diverse that all heterotrophs in the system can be treated as if they were at the same
average trophic position. This paper recasts the original model in terms of a 3 x 3 matrix using three
empirical constants. In this form, the model can be easily generalized to one having nine constants and
reflecting a more realistic view of the interactions among levels of a community.

where M o= increment of initial input
periodically introduced into the

constant rate. The living matter consists of all'
heterotrophs, while the dead retrievable matter
may consist of such sources of carbon as organic
detritus or dissolved organic matter. The irre­
trievable component is that matter (or energy)
which is forever lost to the system through such
processes as respiratory com bustion or
mineralization. The "unstructured" nature of the
food web comes from a set of coefficients which
represent movement of material between these
groups. The transitions are not in a trophic level
line. Rather, groups two and three interact
bilaterally and groups three and four can receive
from other levels bypassing intermediates.

Isaacs calculates the final steady state values for
the total living and dead material by summing two
infinite series. To obtain these series, he in­
troduces a "matrix" which is designed to aid in the
formulation of each of the terms. The series take
the form:

+ ... =

Recent papers by Isaacs (1972, 1973) proposed an
alternative to trophic level schemes for represent­
ing interactions among species. He termed this an
unstructured food web and proposed a "matrix"2
technique (Isaacs 1972) for evaluating the
equilibrium distribution of energy (or matter)
which would result from these interactions. In this
paper we propose an alternative formulation of
Isaacs' model which utilizes classical matrix and
operator techniques.

SERIES APPROACH

Isaacs' model was originally proposed to account
for Young's data (Young 1970) from the Gulf of
California which indicated that cesium was not
found concentrated in ratios one would expect
from a simple food chain. Isaacs assumes that the
principal interconnections in the marine food web
are so diverse that all heterotrophs in the system
(from microorganisms to vertebrates) can be
treated as if they derived their food from a com­
mon source that is only coarsely differentiated.
Therefore, the heterotrophs can all be treated as if
they were at the same average trophic position. In
this unstructured food web, Isaacs visualizes four
levels of matter or energy: 1) source, 2) living tis­
sue, 3) nonliving but retrievable matter, and 4)
irretrievable matter. The source is assumed to be
phytoplankton which is added to the system at a

'Department of Neurosciences, School of Medicine, and Marine
Neurobiology Unit, Scripps Institution of Oceanography,
University of California San Diego, La Jolla, CA 92037.

'We have enclosed Isaacs' use of the word "matrix" in quotes
because he has used the word in a common rather than III the
standard mathematical sense. When the word appears without
quotes in this text we are using it in the standard sense of a
rectangular array of elements which operates on column vectors
from the left to produce new column vectors.
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system at intervals equal to the
time taken by one average step in
the food web,

M; = total quantity of material in living
tissue (level two),

M'; = total in nonliving recoverable
material (level three),

K I = a coefficient of conversion of matter
(or energy) in food into living tis­
sue,

K 2 = a coefficient of conversion of matter
(or energy) in food into irretriev­
able form (e.g., by respiratory com­
bustion or mineralization), and

Kg = a coefficient of conversion of matter
(or energy) in food into nonliving
but retrievable form (e.g., organic
detritus or dissolved organic mat­
ter).

Restrictions on coefficients are:

K I + K 2 + Kg = 1,
0< Ki < 1, where i = 1, 2, or 3.

MATRIX APPROACH

In our representation of the unstructured food
web, source, living tissue, and nonliving but re­
trievable matter are taken to be components in a
vector in a three-dimensional space. This vector
can be written

where WI is the amount of matter (or energy)
present in phytoplankton, W2 is the amount
present in heterotrophs, and Wg is the amount
present in retrievable dead material. The fourth
level (loss) is the difference between the total in­
put and the material present in the three other
levels.

The matrix operator controlling movement of
material from one level to another, using Isaacs'
coefficients, takes the form:

Each K represents the proportion of material
transferred between the levels appropriate to its

position in a time equivalent to one application of
the matrix.

As Isaacs points out, three constants may not be
sufficient. It is probably not reasonable to assume,
for example, that all matter is converted to living
tissue with the same coefficient of conversion or
that both living and dead matter have the same
conversion factor to irretrievable form. One ad­
vantage of our method is that it can be generalized
to a more complex form. This cannot easily be done
with Isaacs' original method because crossterms in
the K's rule out viewing the steady state values as
simple geometric series. The generalized form of
the matrix for an unstructured food web with
these additional coefficients is:

where k I = conversion factor from source to
living,

k 2 = conversion factor from source to
dead retrievable,

kg = conversion factor from source to
inrretrievable,

k 4 = conversion factor from living to liv­
ing,

k 5 = conversion factor from living to dead
retrievable,

k 6 = conversion factor from living to
irretrievable,

k 7 = conversion factor from dead to liv­
ing,

k s = conversion factor from dead to dead
retrievable, and

k 9 = conversion factor from dead to irre­
trievable.

In this case,
k I + k 2 + leg = 1
k 4 + k 5 + le6 = 1
k 7 + kg + k 9 = 1

o < k i < 1, where i = 1 to 9.

When this matrix acts upon the state vector w
the result is somewhat more complex:

Aw = (il ~4 k~)(:~) = ~Ie. I WI + k~~2 + k7W3).k Ie Ie w k2 WI + k5W2 + kg Wg
2 5 8 3

Steady State Results

The eigenvectors and eigenvalves of a matrix
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A S +R = matrix responsible for the biomass in
source and the retrievable dead matter,

A H = matrix responsible for biomass in her­
bivores,

AD = matrix responsible for biomass in detrital
feeders, and

A p = matrix responsible for biomass in preda-
tors.

To obtain the potential biomass for each of the
trophic levels, we take the appropriate matrix
times the steady state vector. Thus, the equation
for the potential biomass of herbivores is obtained
from

In addition to values for total amounts of living
and retrievable dead matter, Isaacs develops
equations for general trophic levels. His equations
can be generated by our approach if our original
matrix is broken down into component parts and
then applied to the steady state vector. For
example, let us consider Isaacs' case (Isaacs 1973)
of a subset of trophic levels which are complete and
mutually exclusive. He considers strict herbivores,
detrital feeders, and full predators to be such a
subset.

Our original matrix A can be written in the
following way

Trophic Level Equationsfully characterize its properties. For the matrix
representing the Isaacs assumptions the following
eigenvalues (A'S) and eigenvectors (u's) can be ob­
tained:

Any initial state of the system (e.g., w) can be
written as a weighted sum of the eigenvectors

In Isaacs' terms c1 = Moand the limiting values
for the second and third compartments are M't and
M't respectively. Therefore

After a sufficient time (n very large), the second
and third term will vanish, leaving an expression
for the final state of the system:

M~ = M oK 1/K2

M'! = MoKs/K2

M"­t-

If we now apply A n times to this vector we obtain

which is exactly Isaacs' result.
For the nine constant model, there is also always

a steady state distribution of matter in the sys­
tem. By finding the eigenvector corresponding to
an eigenvalue of one, we can obtain the following
steady state values of Mt (total quantity of
material in living matter) and M't (total in
nonliving recoverable material) in terms of a con­
stant input M 0:

M; = -kdkg-1) + k 2k 7 M
o

(k4 -1) (kg -1) -ks k 7
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Similarly, for detrital feeders

and for predators

All of Isaacs' other equations for trophic level
potential biomasses or fluxes can be obtained in a
similar manner.

Equations for the potential biomass of trophic
levels can also be calculated for the generalized
model. This is done in a manner similar to that
described in the previous section.

Strict herbivores (feeding on source):

Omnivores (feeding on source, living and re­
trievable dead):

M =Mo(-kl(ks-1)+k2k7)
v (k4 -1) (k s -1) -ks k7

=k1Mo + k4 M; + k 7 M'[.

Particle feeders (feeding on source and re­
trievable dead):

(

k d k 4 -1) (k s -1) + k 2 k 7 (1-k 4»)
Mp. = M o (kr 1)(kg -1) -ks k 7

Detrital feeders (feeding on retrievable dead):

Full predators (feeding on living):

Nonherbivorous omnivores (feeding on living
and retrievable dead):

M
n

= M
o

(-k 4 k 1 k s + k 1 k 4 + k 2 k 7 + k 1 k sk7)

\ (k4 -1)(ks-1)-k5k 7

=k4M; + k7 M'/.
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